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COSMOS Research Testbed

● Cloud Enhanced Open Software Defined 

Mobile Wireless Testbed for City-Scale 

Deployment

● Pilot site at 120th St. and Amsterdam Ave   

in New York City

● Experimentation testbed for advanced 

wireless research and applications

● Sensing and high speed communication

● Edge computing clusters with scalable 

CPU and GPU resources
○ T4 and A100 Nvidia GPUs
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Real Time Video Feeds in Smart City Intersections

Why do we need real time video feeds?

Real-time use cases:

● Traffic analytics

● Communication and feedback with 

cloud-connected vehicles

● Social distancing analysis in 

pandemics

● Radar screen
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Privacy Protection in Smart City Intersections

Deep learning based anonymization pipeline

● custom dataset collection 

● supervised training of customized YOLOv4 models in Darknet framework

● inference optimization with TensorRT to achieve real time performance
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:

● 16 videos, 180 seconds each

● 30 FPS, 3840 x 1920 pixels

● Weather conditions
○ daytime, nighttime, cloudy, sunny, rainy

● Every 6th frame is annotated → over 14,000 ground truth frames
○ 70,186 faces

○ 124,614 licenses

● Median object areas → small
○ faces: 198 pixels

○ licenses: 83 pixels
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COSMOS pilot site:

● 16 videos, 180 seconds each

● 30 FPS, 3840 x 1920 pixels

● Weather conditions
○ daytime, nighttime, cloudy, sunny, rainy

● Every 6th frame is annotated → over 14,000 ground truth frames
○ 70,186 faces

○ 124,614 licenses

● Median object areas → small
○ faces: 198 pixels

○ licenses: 83 pixels

Daytime overcast



YOLOv4 Object Detection 

● YOLOv4 is a single stage model that 

detects, localizes, and classifies relevant 

objects

● There is a trade off between inference 

speed and detection accuracy

● Small objects (faces and license plates) 

require large input resolution models
○ 608 x 608

○ 960 x 960

○ 1440 x 1440
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YOLOv4 Model Training and Validation

● Pre-trained on MS COCO object detection dataset

● 2 class detection → faces and license plates

● 10,000 iterations on custom ground floor intersection dataset

● Training completed using NVIDIA A100 and T4 GPUs hosted on Google Cloud 

Platform

● 2 out of 16 videos are left out of training for validation

● Weights yielding the highest validation mAP are chosen as the final weights

● CIoU loss function

● DropBlock regularization

● 64 frame batch size
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Programmatic Accuracy Evaluation
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Faces License Plates

Example Objects at 
and below the visible 
thresholds

Detection Recall at 
and above the visible 
thresholds

Object area 
distributions



Example Output 
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https://docs.google.com/file/d/1klU_Bei3S_OYjbBPurEm1Fa2x9lB-aiS/preview


Programmatic Accuracy Evaluation - Results (Visible Face Recall) 
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608 x 608 “visible” face recall: 83.72%

960 x 960 “visible” face recall: 93.93%

1440 x 1440 “visible” face recall: 98.90%

How many relevant objects are detected?



Programmatic Accuracy Evaluation - Results (Visible License Recall) 
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608 x 608 “visible” license recall: 99.71%

960 x 960 “visible” license recall: 99.96%

1440 x 1440 “visible” license recall: 99.96%

How many relevant objects are detected?



Manual Pipeline Validation – Overview

● Ground truth labels are scarce and must be prioritized for training

● Anonymization accuracy is validated by visually inspecting output on new 

intersection videos

● Areas are defined where an exposed face or license is counted as a “miss”
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Manual Pipeline Validation – Results

Manual evaluation results 

confirm generalization to new 

intersection scenes.
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Anonymization in Real Time
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● To operate the pipeline in real-time, inference latency needs to be 

minimized → Computational complexity of forward pass is immense

● Real-time target is 33ms end-to-end latency. This includes:

○ frame read

○ preprocessing

○ inference

○ nms/postprocessing

○ anonymization

○ frame write



Operating at Real Time
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● TensorRT is an inference optimization framework for deep learning 

models on Nvidia GPUs

○ FP16 quantization

○ Layer and tensor concatenation

○ Tuned GPU kernel selection

○ Dynamic tensor memory



Inference Optimizations with TensorRT
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TensorRT Optimized Pipeline vs. Non-Optimized 

● Pipeline configurations

○ 960 x 960 model

○ batch size = 1

○ FP32 precision

○ 1 x A100 GPU

● TensorRT C++ Pipeline reduces 

inference bottleneck

● Frame read/write operations are 

also faster in C than in Python
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Anonymization Pipeline Timing Profiles
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● 960 x 960 input resolution 

● T4 GPU

● batch size = 1

● FP16

● 63.34 ms/frame

● 608 x 608 input resolution 

● A100 GPU

● batch size = 8

● FP16

● 18.28 ms/frame
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Latency Analysis Takeaways
1. Jetson Nano (TegraX1) can’t operate the 

pipeline anywhere close to real-time. 

Even the 608x608 model operates at:

25.94 + 563.34 + 8.23  =  597.5 ms  =  1.674 FPS

2. Several configurations (GPU/FP 

precision/batch size) operate under 33.3 

ms time constraint, excluding frame 

read/write. For example: 960x960, A100, 

FP16, BS=1 →

9.7 + 16.33 + 0.51  =  26.54 ms  =  37.68 FPS

3. Average latencies improve if we can 

tolerate batch inference. For example: 

960x960, A100, FP16, BS=8 →

10.13 + 12.39 + 0.49  =  23.01 ms  =  43.46 FPS



Assessment of Risk of Violating Privacy - Edge Cases
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       Licenses passing poles   People passing license
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Faces superimposed on other objects



Assessment of Risk of Violating Privacy - Edge Cases
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Buses and branches Person holding object

             Babies



Conclusion
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● The blurring pipeline anonymizes up to 99% of faces and license 

plates

○ Edge cases can be reduced with more (and better) training data 

and data augmentation

● The blurring pipeline operates in real time

○ TensorRT inference optimizations, datacenter GPUs, and 

reduced precision calculations drastically increase throughput

Future work could explore unsupervised detection and model reduction 

for edge devices



Questions
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