Real-Time Video Anonymization in Smart City Intersections

Alex Angus*, Zhuoxu Duan**, Gil Zussman^ and Zoran Kostic^ *Qualcomm Technologies, Inc., **Rensselaer Polytechnic Institute, ^Columbia University

Session on Security and Privacy 19th IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS 2022). October 20 - 22, 2022. Denver, Colorado.

1

Presentation Outline

Introduction

Privacy Concerns in Smart City Intersections

Methodology

Evaluation Results

Conclusion

COSMOS Research Testbed

- <u>C</u>loud Enhanced <u>Open Software Defined</u>
 <u>Mo</u>bile Wireless Testbed for City-<u>S</u>cale
 Deployment
- Pilot site at 120th St. and Amsterdam Ave in New York City
- Experimentation testbed for advanced wireless research and applications
- Sensing and high speed communication
- Edge computing clusters with scalable CPU and GPU resources
 - T4 and A100 Nvidia GPUs

Real Time Video Feeds in Smart City Intersections

Why do we need real time video feeds?

Real-time use cases:

- Traffic analytics
- Communication and feedback with cloud-connected vehicles
- Social distancing analysis in pandemics
- Radar screen

Personal privacy is inherently compromised when using ground floor video feeds.

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

video feeds.

7

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Personal privacy is inherently compromised when using ground floor

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Goal: Build a pipeline for anonymization of faces and license plates in intersection videos.

ENGINEERING

Goal: Build a pipeline for anonymization of faces and license plates in intersection videos.

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Fu Foundation School of Engineering and Applied Science

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Fu Foundation School of Engineering and Applied Science

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Goal: Build a pipeline for **anonymization** of faces and license plates in **intersection videos.**

Privacy Protection in Smart City Intersections

Deep learning based anonymization pipeline

- custom dataset collection
- supervised training of customized YOLOv4 models in Darknet framework
- inference optimization with TensorRT to achieve real time performance

COSMOS pilot site:

- 16 videos, 180 seconds each
- 30 FPS, 3840 x 1920 pixels
- Weather conditions
 - daytime, nighttime, cloudy, sunny, rainy
- Every 6th frame is annotated \rightarrow over 14,000 ground truth frames
 - 70,186 faces
 - **124,614 licenses**
- Median object areas \rightarrow small
 - faces: 198 pixels
 - licenses: 83 pixels

26

COSMOS pilot site:

- 16 videos, 180 seconds each
- 30 FPS, 3840 x 1920 pixels
- Weather conditions
 - daytime, nighttime, cloudy, sunn
- Every 6th frame is annotated \rightarrow o
 - **70,186** faces
 - **124,614 licenses**
- Median object areas \rightarrow small
 - faces: 198 pixels
 - licenses: 83 pixels

Daytime sunny

COSMOS pilot site:

- 16 videos, 180 seconds each
- 30 FPS, 3840 x 1920 pixels
- Weather conditions
 - daytime, nighttime, cloudy, sunn
- Every 6th frame is annotated \rightarrow o
 - **70,186** faces
 - **124,614 licenses**
- Median object areas \rightarrow small
 - faces: 198 pixels
 - licenses: 83 pixels

Daytime rainy

COSMOS pilot site:

- 16 videos, 180 seconds each
- 30 FPS, 3840 x 1920 pixels
- Weather conditions
 - daytime, nighttime, cloudy, sunn
- Every 6th frame is annotated \rightarrow o
 - **70,186** faces
 - **124,614 licenses**
- Median object areas \rightarrow small
 - faces: 198 pixels
 - licenses: 83 pixels

Nighttime rainy

COSMOS pilot site:

- 16 videos, 180 seconds each
- 30 FPS, 3840 x 1920 pixels
- Weather conditions
 - daytime, nighttime, cloudy, sunn
- Every 6th frame is annotated \rightarrow of
 - **70,186** faces
 - **124,614 licenses**
- Median object areas \rightarrow small
 - faces: 198 pixels
 - licenses: 83 pixels

Daytime overcast

YOLOv4 Object Detection

- YOLOv4 is a single stage model that detects, localizes, and classifies relevant objects
- There is a trade off between inference speed and detection accuracy
- Small objects (faces and license plates) require large input resolution models
 - 608 x 608
 - 960 x 960
 - **1440 x 1440**

MS COCO Object Detection

Bochkovskiy, A., Wang, C., & Liao, H.M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. *ArXiv, abs/2004.10934*.

31

YOLOv4 Model Training and Validation

- Pre-trained on MS COCO object detection dataset
- 2 class detection \rightarrow faces and license plates
- 10,000 iterations on custom ground floor intersection dataset
- Training completed using NVIDIA A100 and T4 GPUs hosted on Google Cloud Platform
- 2 out of 16 videos are left out of training for validation
- Weights yielding the highest validation mAP are chosen as the final weights
- CIoU loss function
- DropBlock regularization
- 64 frame batch size

Programmatic Accuracy Evaluation

Faces < 250 pixels

2 C C C

Licenses < 900 pixels

Example Output

Programmatic Accuracy Evaluation - Results (Visible Face Recall)

608 x 608 **"visible"** face recall: 960 x 960 **"visible"** face recall: 1440 x 1440 **"visible"** face recall:

83.72% 93.93% 98.90% How many relevant objects are detected?

$$ext{Recall} = rac{tp}{tp+fn}$$

Programmatic Accuracy Evaluation - Results (Visible License Recall)

608 x 608 **"visible"** license recall: 960 x 960 **"visible"** license recall: 1440 x 1440 **"visible"** license recall:

99.71% 99.96% 99.96% How many relevant objects are detected?

$$ext{Recall} = rac{tp}{tp+fn}$$

Manual Pipeline Validation – Overview

- Ground truth labels are scarce and must be prioritized for training
- Anonymization accuracy is validated by visually inspecting output on new intersection videos
- Areas are defined where an exposed face or license is counted as a "miss"

Fu Foundation School of Engineering and Applied Science

Manual Pipeline Validation – Results

Model Resolution	Face Recall	License Plate Recall		
960x960	98.24%	98.61%		
1440x1440	98.61%	98.62%		

TABLE I: Manual Accuracy Evaluation Results

Manual evaluation results confirm generalization to new intersection scenes.

The Fu Foundation School of Engineering and Applied Science

Anonymization in Real Time

- To operate the pipeline in real-time, inference latency needs to be minimized → Computational complexity of forward pass is immense
- Real-time target is 33ms end-to-end latency. This includes:
 - frame read
 - preprocessing
 - inference
 - o nms/postprocessing
 - anonymization
 - frame write

Fu Foundation School of Engineering and Applied Science

Operating at Real Time

- TensorRT is an inference optimization framework for deep learning models on Nvidia GPUs
 - FP16 quantization
 - Layer and tensor concatenation
 - Tuned GPU kernel selection
 - Dynamic tensor memory

Inference Optimizations with TensorRT

TensorRT Anonymization Pipeline

TensorRT Optimized Pipeline vs. Non-Optimized

- Pipeline configurations
 - o 960 x 960 model
 - batch size = 1
 - FP32 precision
 - 1 x A100 GPU
- TensorRT C++ Pipeline reduces inference bottleneck
- Frame read/write operations are also faster in C than in Python

Fu Foundation School of Engineering and Applied Science

Anonymization Pipeline Timing Profiles

- 960 x 960 input resolution
- T4 GPU
- batch size = 1
- FP16
- 63.34 ms/frame

- 608 x 608 input resolution
- A100 GPU
- batch size = 8
- FP16
- 18.28 ms/frame

Latency Analysis Takeaways

TABLE II: Anonymization Pipeline Timing with Various Configuratio	TABLE II:	Anonymization	Pipeline	Timing v	with '	Various	Configuration
---	-----------	---------------	----------	----------	--------	---------	---------------

Model Input Resolution (pixels)	GPU	Precision	Batch Size	Full Pipeline	Frame Read	Preprocess	Inference	NMS + Postprocess	Frame Write
TensorRT C++ Pipeline									
608x608	TegraX1	FP16	1	653.79	5.13	25.94	563.34	8.23	51.13
960x960	TegraX1	FP16	1	1491.49	10.79	64.74	1305.81	10.80	99.32
1440x1440	TegraX1	FP16	1	3285.98	23.74	144.34	2899.58	13.40	204.89
608x608	TeslaT4	FP16	1	29.06	1.74	4.40	17.94	0.27	4.70
960x960	TeslaT4	FP16	1	63.34	3.65	10.67	37.68	0.47	10.86
960x960	TeslaT4	FP16	4	63.71	3.91	10.73	38.32	0.45	10.28
960x960	TeslaT4	FP16	8	63.37	3.87	10.96	38.48	0.43	9.63
1440x1440	TeslaT4	FP16	1	139.35	7.64	23.43	84.97	0.76	22.55
1440x1440	TeslaT4	FP16	4	139.93	7.88	23.51	85.97	0.75	21.81
608x608	TeslaT4	FP32	1	44.75	1.59	4.34	33.99	0.24	4.58
960x960	TeslaT4	FP32	1	97.46	3.66	10.52	72.41	0.44	10.43
960x960	TeslaT4	FP32	4	99.34	3.89	11.05	73.51	0.45	10.43
1440x1440	TeslaT4	FP32	1	223.01	7.65	23.43	168.4	0.76	22.78
608x608	A100	FP16	1	21.82	1.90	4.41	9.83	0.33	5.34
960x960	A100	FP16	1	42.44	4.05	9.7	16.33	0.51	11.83
960x960	A100	FP16	4	38.82	4.00	9.75	13.16	0.51	11.39
960x960	A100	FP16	8	38.1	4.03	10.13	12.39	0.49	11.05
1440x1440	A100	FP16	1	83.19	8.2	21.22	28.26	0.83	24.67
1440x1440	A100	FP16	4	79.35	8.14	21.34	24.67	0.80	24.39
608x608	A100	FP32	1	23.64	1.74	4.28	12.17	0.28	5.15
960x960	A100	FP32	1	46.88	3.9	9.66	21.34	0.50	11.47
960x960	A100	FP32	4	42.47	3.88	9.92	17.09	0.49	11.08
1440x1440	A100	FP32	1	91.62	8.07	21.06	37.22	0.81	24.45
				PyTorch I	ython Pipeline				
608x608	TeslaT4	FP32	1	78.43	3.63	4.91	61.01	0.01	7.65
960x960	TeslaT4	FP32	1	173.31	9.52	10.93	134.77	0.01	16.08
608x608	A100	FP32	1	63.05	3.02	3.89	46.86	0.01	8.01
960x960	A100	FP32	1	79.94	11.07	8.06	41.89	0.01	16.89
960x960	A100	FP32	2	63.73	7	8.1	30.22	0.02	16.62
1440x1440	A100	FP32	1	130.89	14.12	20.11	58.86	0.02	34.41

All values are average execution time per frame measured in milliseconds. Timing operations incur negligible overhead ($\approx 10 \mu s$).

 Jetson Nano (TegraX1) can't operate the pipeline anywhere close to real-time.
 Even the 608x608 model operates at:

25.94 + 563.34 + 8.23 = 597.5 ms = 1.674 FPS

 Several configurations (GPU/FP precision/batch size) operate under 33.3 ms time constraint, excluding frame read/write. For example: 960x960, A100, FP16, BS=1 →

9.7 + 16.33 + 0.51 = 26.54 ms = 37.68 FPS

 Average latencies improve if we can tolerate batch inference. For example: 960x960, A100, FP16, BS=8 →

10.13 + 12.39 + 0.49 = 23.01 ms = 43.46 FPS

Assessment of Risk of Violating Privacy - Edge Cases

Licenses passing poles

People passing license

Assessment of Risk of Violating Privacy - Edge Cases

Faces superimposed on other objects

Assessment of Risk of Violating Privacy - Edge Cases

Buses and branches

Person holding object

Babies

Conclusion

- The blurring pipeline anonymizes up to 99% of faces and license plates
 - Edge cases can be reduced with more (and better) training data and data augmentation
- The blurring pipeline operates in real time
 - TensorRT inference optimizations, datacenter GPUs, and reduced precision calculations drastically increase throughput

Future work could explore **unsupervised detection** and **model reduction** for edge devices

