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Abstract We develop a machine learning-based model to predict the Raman tilt induced in a multi-
wavelength signal propagating through a 50km optical fiber deployed in the COSMOS testbed. The
neural network model achieves a mean prediction error of 0.02–0.13 dB for randomly loaded channels.
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Introduction
In recent years, there has been much interest in
the use of data-driven control and management
methods in optical transmission systems. Phys-
ical phenomena that affect signal performance
and system operation depend on the cumulative
influence of the numerous components within the
system. Component characteristics often vary
not only due to different internal architectures
and materials, but also due to time-dependent
effects such as mechanical stress and tempera-
ture. Conventionally, these factors are accounted
for through lab measurements and margin engi-
neering to allow for component characteristic vari-
ations and uncertainty. With the use of disag-
gregated systems, such methods become prob-
lematic and unscalable as a single vendor does
not control and test the end-to-end system and
its variations. Low margin engineering has also
received interest as a means to reduce the cost
of engineering systems with large margins[1]. In-
creased data collection and data-driven meth-
ods, potentially leveraging machine learning (ML)
techniques, which are designed to use such data
are important to make progress in these low mar-
gin and/or disaggregated systems.

This paper examines the potential for the use
of deep learning to model the stimulated Raman
scattering (SRS) effect in a wavelength division
multiplexed (WDM) optical transmission system.
A deep neural network (DNN) is developed to ob-
tain the tilt due to the SRS effect. The DNN model
is trained and tested for randomly loaded WDM
transmission. Its error performance is compared
with that of existing analytical models.

Data-driven System Models
Data-driven methods have explored the use of
both lab-based and field-based data collection.

One approach is to collect datasets on compo-
nents in the lab and then build models that can
be efficiently implemented on the aggregate sys-
tem in the field, e.g., using inference on a DNN
trained on the component. Often these methods
include the use of transfer learning so that numer-
ous components can be rapidly characterized in
the lab and/or retrained in the field. This approach
has been used for neural network models of op-
tical amplifiers to predict end to end signal power
dynamics[2]. Another approach is to use in-field
tools and measurements to collect data and de-
velop or re-train models based on this live or real
time data. Such methods have been studied us-
ing end-to-end characterization and component-
wise characterization[3]. In each of these cases,
a key question is to what extent physics-based
models should be used or data-based models in
which the system is treated like a “black box”. The
physics of optical transmission is well understood
and accurate models are routinely used to con-
trol and manage optical systems. Physics-based
models can themselves be augmented with data-
driven methods to incorporate more accurate or
real-time data for better predictions.

SRS is an example of a well-understood physi-
cal effect in optical transmission systems in which
optical power from short wavelength signals is
transferred to longer wavelength signals through
the fibre Raman interaction, resulting in a tilted
spectrum at the fibre output. This tilt depends on
the total power of the aggregate signals, the dis-
tribution of that power across the spectrum (i.e.,
the wavelength locations of the signals)[4], and is
modified by the wavelength dependent (linear) fi-
bre loss. Previous studies have shown that the
tilt can be accurately predicted for a set of uni-
formly distributed WDM channels using a sim-
ple analytical formula based on a few basic as-



Fig. 1: Measurement setup for fibre-induced Raman tilt.
ROADM: Reconfigurable optical add-drop multiplexer; WSS:

Wavelength selective switch; B: Booster, P: Pre-amplifier.

sumptions[4]–[7]. The wavelength dependent Ra-
man gain coefficient is assumed to be a trian-
gular (ramp) function with respect to wavelength
and the fibre is assumed to be uniform along its
length. With a few simple measurements, the Ra-
man gain coefficient and wavelength-dependent
loss can be roughly measured for a given fibre
span. However, a transmission span might have
a highly variable loss (due to splices and other de-
fects) along its length and the distribution of WDM
channels, in general, is not uniform and channel
powers vary due to wavelength-dependent power
dynamics or engineering rules for different modu-
lation format signals. This can lead to significant
errors in the analytical model predictions.

ML-based models provide an alternative, how-
ever, their potential for accurately predicting SRS
in WDM transmission systems has not yet been
studied. A first step in this direction is to ex-
plore the use of ML models for the case of vari-
able channel configurations and to compare such
methods with the established analytical models.
In this work, the SRS effect is systematically stud-
ied in a 50 km standard single-mode fibre (SSMF)
span that carries WDM signals with varying num-
bers and wavelength configurations.

Experimental Setup and Results
We conduct experiments and collected fiber
measurements using the open-access optical-
wireless PAWR COSMOS testbed deployed in
Manhattan, New York City[8],[9]. The testbed
includes eight Lumentum ROADM-20 graybox
units which can be interconnected using various
lengths of fiber spools, and dark fibre connections
between Columbia University, 32 Avenue of the
Americas (32 AoA), and City College of New York.

Fig. 1 depicts the experimental setup in the
COSMOS testbed using two ROADM units and
one fiber spool. A comb source is used to gen-
erate 90 channels spaced at 50 GHz to emu-
late a WDM spectrum in the C-band from λ1 =

1, 529.16nm (196.05 THz) to λ90 = 1, 564.68nm
(191.60 THz). The output of the comb source is

Fig. 2: Observed and analytical values of Raman tilt in case
of uniform and step loading.

connected to an add port of the ROADM MUX
WSS, which selects different channels and flat-
tens the channel powers at the booster output
(line-out) such that the average power per chan-
nel is P0 with a maximum deviation of 0.2 dB
from the mean. The WDM signal then traverses
a 50 km fibre spool and is received at the pre-
amplifier input (line-in) of the other ROADM unit,
and it is dropped after a DEMUX WSS.

We perform a calibration test with a per chan-
nel launch power P0 = −20dBm into the fibre,
where the difference between the spectra at the
output (Sout) and input (Sin) of the fiber, gives the
wavelength-dependent linear loss of the fiber. For
all other cases, we fix P0 = +3.5dBm to max-
imize the Raman effect. We also conduct an-
other calibration test where all the 90 channels
are loaded in the input spectrum (Sin). The out-
put spectrum (Sout) in this test is used to calcu-
late the normalised Raman gain coefficient. To
study the Raman tilt, we consider a varying num-
ber of channels loaded at the input of the fiber,
N ∈ {2, 5, 10, 20, 30, . . . , 80, 90}.

We first consider two types of channel loading
configurations: (i) N channels uniformly loaded
across the spectrum with the same total band-
width (Uniform); (ii) N channels loaded in steps
with a fixed spacing of 50 GHz from one side of
the spectrum, λ1 (Step). The tilt in the output
spectrum due to SRS is measured as the ratio
of the output power of the N th channel to that of
the first channel, i.e., PN/P1. The variations in the
SRS tilts observed for the two loading cases are
depicted in Fig. 2. We show that our experimen-
tal observations agree with the calculated values
obtained using the analytical model for SRS tilt
presented by Bigo et al.[4]:
(PN/P1)dB = 2.17(g′/Ae)P0N(N − 1)Le∆f, (1)

where ∆f is the channel spacing, g′ is the nor-
malised Raman gain coefficient, and Ae/Le is the
effective area/length of the fibre.



Fig. 3: Observed, analytical and predicted values of Raman
tilt in case of random loading.

Fig. 4: Histograms of the errors in Raman tilt values obtained
using the analytical model (left) and DNN model (right).

Note that the results for N = 90 overlap be-
cause when all channels are loaded, the input
spectrum Sin is the same for both loading cases
but for N < 90, the tilt is higher with uniform
loading due to larger channel spacing. However,
in general the channel loading is random. To
analyze such scenarios, we consider randomly
loaded channels across the spectrum with the
same fixed 50 GHz spacing. For each value of
N , we consider 100 random channel configura-
tions, and the measured and calculated values of
the SRS tilt are shown in Fig. 3. Evidently, there
are considerable variations in the observed val-
ues that are not reflected in the analytical results
obtained using Eqn. (1). To address this issue,
we develop a DNN model to predict the SRS tilt in
arbitrarily loaded channel conditions in a ROADM
transmission system.

A DNN-based Raman Tilt Prediction Model
The collected random SRS tilt dataset for 50 km
fibre is divided into the training and test sets with
a split ratio of 80%–20%. The training set also in-
cludes uniform and step channel loading configu-
rations (refer Fig. 2). We create a DNN model of
the fiber spool for predicting its SRS tilt using the
following architecture. The DNN consists of ten
fully connected layers: one input layer, eight hid-
den layers with 128/128/64/64/32/32/16/16 neu-
rons, and one output layer. The input features in-
clude the total input power Pin and the total out-
put power Pout of the fiber, input power spectrum
Sin to the fiber, and a 90-dimensional binary vec-

Fig. 5: MAE with the standard deviation of the Raman tilt
values obtained by the analytical and DNN models.

tor indicating the channel loading configuration.
Then, the output layer predicts the fibre’s SRS tilt
as a function of the wavelength channels. The
DNN model is trained using the mean square er-
ror (MSE) and Adam optimizer, with the exponen-
tial linear unit (ELU) activation function at all lay-
ers and a learning rate of 5e-5 over 800 epochs.

We compare the experimental measurements
with the DNN predictions and analytical calcula-
tions (Eqn. (1)) using the absolute errors. Fig. 4
shows the histograms for the errors incurred us-
ing the analytical and DNN models, where we
observe that the error for the DNN model has
a larger spread over lower values when com-
pared to the analytical counterpart. We also cal-
culate the mean absolute error (MAE) in the two
cases, Fig. 5, where the bars represent the stan-
dard deviations. It can be seen that the DNN
model achieves significantly lower MAEs in pre-
dicting the SRS tilt when compared to the analyt-
ical model. For example, with N = 40 randomly
loaded channels, the MAE obtained by the DNN
and analytical models are 0.06 dB and 0.13 dB,
respectively.

Conclusions
The SRS tilt induced in WDM signal propagation
through SSMF is measured using built-in ROADM
OCMs. Analytical and DNN-based models are
used to predict the SRS tilt in randomly loaded
channel configurations, where the latter incurs
lower prediction errors. In future work, we will
analyse the effects of different system parameters
on the SRS tilt and prediction errors of the DNN
model.
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